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SUMMARY

We develop approximate methods to compare the efficiencies. and to compuie the power of alternative
potential designs for sampling from a cohort before beginning to collect exposure data. Our methods
require only that the cohort be assembled, meaning that the numbers of individuals N, ; at risk at pairs of
event times 7, and ;2 7, are available. To compute N, one needs to know the eniry, follow-up,
censoring, and event history, but not the exposure, for each individual. Our methods apply to any
“‘unbiased control sampling design,’’ in which cases are compared to a random sample of noncases at risk
at the time of an event. We apply our methods to approximate the efficiencies of the nested case-control
design, the case-cohort design, and an augmented case-cohort design, compared to the full cohort design,
in an assembled cohort of 17,633 members of an insurance cooperative who were followed for mortality
from prostatic cancer. The assumptions underlying the approximation arc that éxposure is unrelated both to
the hazard of an event and to the hazard for censoring. The approximations. performed well in simulations
when both assumptions held and when the exposure was moderately related to censoring.

1. Introduction

Retrospective cohort studies can usually be carried out much more rapidly and econcmically
than prospective cohort studies because it is not necessary to wait for the events to occur
(Breslow and Day, 1987). Instead, available records are used to define the cohort and to
determine for each member the time interval during which he was at risk and when the event of
interest, such as diagnosis of cancer, occurred, if it did. We use the term assembled cohort to
describe a cohort for which this information is available. The purpose of this paper is to show
how to compare the efficiencies of various methods of sampling cxposure information from an
assembled cohort.

To be specific, suppose that age is the time scale that requires tightest control (Breslow et al.,

1983) and that the d events occur at distinct ages #, < f, < -+ < {,. Define the set R; of
merbers at risk at ¢; and, for 7, < 7;, let N,; be the number of individuals who are members
of R, and R;. We show how the quantities Ny, (k,j=1,2,...,d) may be used to select an

efficient design for sampling subjects to obtain information on an exposure variable X when the
hazard of an event at ¢ is Ay(f)exp(f.X), X is a scalar, and Ay(f) is the age-specific hazard for
a subject with exposure X = 0. A more precise definition of an assembled cohort is a cohort for
which the quantities N, ; have been determined.

Key words: Case-cohort design; Nested case-control design: Proportional hazards; Superpopulation
variance; Unbiased control sampling.
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One option is to gather exposure information and other covariates on all members of the
cohort. However, important cost savings can be achieved with very little loss of efficiency by
obtaining exposure information on the ¢ subjects who develop events and on a subset of other
cohort members, provided d is small compared to N, the total cohort size, as we shall assume.
We denote by C; the set of all V;; - 1 members of R; who do not have the event at ¢ 5
Liddell, McDonald and Thomas (1977) proposed taking a small random sample of the members
of C; and comparing their exposures with that of the case at f;, as in the conditional logistic
analysm for time-matched case-control studies (Cox, 1972; Breslow et al., 1978). The proce-
durc has good efficiency relative to the full cohort analysis (Breslow and Patton, 1979:
Whittemore and McMillan, 1982) for testing the null hypothesis of no exposure effect (3 = 0).
This widely used sampling scheme is termed the nested case-control design. Recently,
Prentice (1986) proposed a case-cohort design in which a simple random sample called the
subcohort is obtained from the entire cohort, and the exposure of the case at ¢, is compared to
that of all subcohort members at risk at t;. The estimation procedure is the same as for a
matched case—~control analysis, except the “controle arc the subcohort members who are in C;,
the subset of R that excludes the case. We also consider an augmented case-cohort design in
which exposure mformatlon is obtained on a random sample from the entire cohort {subcohort
S;) and from a second random sample drawn from all individuals at risk at or beyond a fixed age
7 (the subcohort S,). Prentice (1986) suggested such cohort augmentation but provided no
methods for analysis. The difficult variance calculations might be circumvented by means of an
extension to the bootstrap procedure given by Wacholder et al. (i989) for the standard
case—cohort design. Although the methods for variance estimation have not been worked out in
detail, we shall present a simple method to approximate the efficiency of augmented case—cohort
designs for an assembled cohort and to determine whether it is even worthwhile to consider such
designs for a given application.

The efficiency characteristics of a design depend on the nature of the failure and censoring in
the cohort. Robins, Gail, and Lubin (1986) distinguish a closed cohort, in which risk sets are
nested and monotonically decreasing in time, from an open cohort, in which there is no such
nesting. In clinical trials, the cohorts are typically closed. The basic time scale is often time after
randomization so all members begin to be at risk at ¢ = 0. The risk sets are subsequently
depleted by competing risks, loss to follow-up, and events of interest but are never supple-
mented. Many epidemiologic cohorts, on the other hand, are open, because age is used as the
basic time scale and subjects’ ages vary at the beginning of follow-up. Thus risk sets at later ages
may contain subjects who were not at risk at earlier ages.

Self and Prentice (1988) presented general efficiency calculations for the case-cohort design
and demonstrated pumerically that the design is more efficient than the case-control design for a
clinical trial with rare events and no competing risks. Simulations in Wacholder et al. (1589)
suggested that in closed cohorts the case—cohort design is more efficient than the case-control
design in the absence of competing risks and less efficient with moderate or large competing
risks. Langholz and Thomas (1990) presented simulations suggesting that the nested case-
control design could be more efficient than the standard case-cohort design for cohorts even
with a litde censoring. We discuss the relative efficiencies of these two designs and the
avgmented case—-cohort design in the context of a specific assembled cohort of 17,633 men who
enrolled in an insurance cooperative in 1965 and who were subsequently followed for mortality
from prostatic cancer through 1985 (Bjelke, unpublished Ph.D. thesis, University of Minnesota,
1973). Because subjects had varying ages at enrollment, risk sets at older ages contain some
members who had not been at risk at earlier ages. Thus, the assembled cohort we are studying is
open.

In Section 2, we define an estimating equation for estimating 3 and testing 3 = 0 for any
design with “‘unbiased control sampling.”” By unbiased control sampling, we mean that the
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control group, C used for comparison with the individual with the event at ¢; is a random
sample, drawn w1th0ut replacement from C;. This class of designs includes all the designs
mentioned above. For example, since the subcohort in a case-cohort design is a random sample
from the entire cohort, the members in C are a random sample from C;. We present simple
approximate variance estimates, called superpopulatzon variances, for the score statistic for
testing 8 = 0 and for the estimate 3, which are valid when 8 = 0 and when censoring is
independent of exposure X. These approximate variances can be used to estimate power and to
gauge the relative efficiences of these designs using information only on the N, in the

assembled cohort. Section 3 presents efficiency calculations for the insurance cooperative
cohort. Section 4 describes the results of simulations to confirm the accuracy of the efficiency
calculations derived from the superpopulation variance and to determine whether these calcula-
tions can be misleading if censoring depends on X.

2. Methods

2.1 Analysis via Estimating Equations for Designs with Unbiased Control Sampling

Let D; denote the singleton set containing the index of the individual who failed at #; and let C
denotc the set of indices of the control group, which is a random sample drawn \Vlthout
replacement from C;. We note that D, and C’ are disjoint, and we define R = C U D, Asin
Prentice (1986), deﬁnc the logarithm of the pseud@ -liketihood by

I(B) = ;IJ(B)

= 3,[log{S1(ie D;)exp(BX;)} — log{ZI(ie R )Jexp(BX,)}], (1)

where j indexes event times 7; and i indexes individuals. Here J(.A) is an indicator function
with value 1 if A is true and O elsewhere, sums indexed by j are over all distinct event times,
{;, and other sums are over all individuals in the cohort, unless indicated otherwise. Equation (1)
is of the same form as the Cox (1972) partial log-likelihood for the full cohort except that R~
replaces R, = C, U D,. Letting U(8) = a//306 and U(p) = alj/aﬁ we write the score

U(g) = > U(B)

i#

11

s[2i(ieD) X, - {S1(ieR Jexp(8X,)} {TI(ieR,)) X, exp(8X)}], (2)

and estimate 3 by the solution 3 to the equation {/(8) = 0.

A necessary condition for the estimating equation U( 8) = 0 to yield consistent estimates 8 is
that E{U/(3)} = 0 (Godambe, 1960). Condition, for the moment, on given R, N, > and ny;
Then the probability that individual i was the member of R who had the evem in the mterval

(4,8, + Alis

njj

Ahﬂ(tj)cxp(BXi)Pr(éj |C;. i) = Aho(t_,)exp(ﬂXi)(A.r/j -1 ) -

for a small positive A, provided C is a random sample from C;. The corresponding conditional
probability of R is the sum of such terms over indices { in R Therefore,

Pr(iis the case | R;, R;. N, n;;) = exp(BX;)/ Zier,exp(BX,),

Ji®

which is independent of R ;, V;;, and n,;, where nj; = zl(ie C. ;). Hence Pr(i is the case | ﬁj)
is given by the cxpression ahovc and therefore F{ U (;3)} = ) and EU(p = 0.
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As in equation (8) of Prentice (1986), var(U) = XV, + 2%, _,;V,; where V,; =
cov(U,, Uj), and from Taylor series expansion,

ar(B) = (2 V) SV + 22 V(T ) ()

Also, the pscudo-score test for @ = 0 is based on U(B){var{ U(O)}}"”Z, where V), are
evaluated at § = 0. Various designs for unbiased control sampling lead to different covariances
V,; and different efficiencies. In Section 2.2 we present a simple approximate calculation of
var{ U(0)} that is useful for assessing the relative efficiencies of alternative designs. We shall
assume that the four unbiased sampling plans in Section 2.2 vield consistent asymptotically
normal estimates § as solutions to equation (2). These properties have been proved for the full
cohort analysis (Cox, 1972, 1975; Andersen and Gill, 1982), the nested case-control design
{Oakes, 1981), and the case—cohort design (Self and Prentice, 1988), but no such proof has been
given for augmented case-cohort sampling.

2.2 Superpopulation Variance FEstimates for the Full-Cohort, Nested Case-Control,
Case-Cohort, and Augmented Case—~Cohort Designs

In general, the ¥V, and V), ; depend on 3, the nuisance hazard h(7), and censoring patterns in a
complicated way (Self and Prentice, 1988). However, calculations of these quantities simplify
under the assumptions: (A1) 8 = 0 and (A2) the mechanism determining when individuals are
under observation, such as left truncation and right censoring, is independent of X. Calculations
of local efficiency and power for small 3 may be carried out under these assumptions. However,
to the extent that assumption A2 is violated, the following procedures must be regarded as
approximate. Simulations suggest that the following methods yield useful resulis even when
assumption A2 is false (§4.3). We call calculations under the assumptions Al and A2
superpopulation variance estimates, because under those assumptions every member of the
cohort, whether dead at an early age or alive and at risk at an old age, has an associated X ; that
may be regarded as an independent random observation from a superpopulation with mean
E X = p and variance var(X) = ¢>. Even when it is unreasonable to regard cohort members as
a random sample from a superpopulation, these variance estimates are still useful if the cohort is
large.
To take advantage of the superpopulation assumptions, we reexpress U,(0) under 8 = 0 as

Ui(0) = (n;; + 1) {n,2i(ieD) X, - si(ieC)X,). (4)
For later use, we define n,; = XI(ie C‘k N C’) and recall that N, ; = 21(ie R, N R ) counts
cases in addition to the members of C, N C,. As in Prentice (1986) we shall always let k index
the earlier of two event times, ¢, < ¢, We also define 6, ; = 1if D; C C, and O otherwise.
We call the censoring and survnval information needed to calculate N,; and N, the
assembled cohort history, ACH, which does not include information on covariates or ori who
died at ¢;. Subsequent designed sampling from the assembled cohort defines the entire survival
history for all those who died and all subjects chosen to be in any comparison group, C We call
this information the sempling history, SH. In the sampling designs we consider, a]l cases are
always sampled, so their survival histories are the same in each SH, but the associated quantities
8, ; may vary. Conditional on SH, the indicators in equation (4) are fixed constants, and since
each index i is associated with an independent, identically distributed observation, X, the
conditional expectation of U;(0), given SH, is zero. This follows because exactly n ,; individuals
contribute to the second sum in (4), conditional on SH. The conditional variance of Uy(0) given
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SH is immediately seen to be

var{U;(0) [SH} = (n;; + 1)_2{”%’"2 +ny;0)

n{n;+1) o, (5)
since D; and Cw‘i are disjoint sets of indices. Likewise the conditional covariance is

cov{U,(0), U(0) [SH} = (n + 1) (n; + 1) {0+ 0~ 028, n, + o7n,)

= (m+ 1) (n,;+1) (ng —ny,8,,)0% (6)

The two zero terms in equation (6) arise with #, < 7; because D, is disjoint from D, and C i
We comment parenthetically that the calculation E{U;(0)|SH} = 0 and calculations leading to
(5) and (6) by the superpopulation method are very different from the calculations of Cox (1972)
and Prentice (1986), who do not condition on SH but rather take expectations conditional on
membership in risk sets R ;. Their approach, unlike the superpopulation calculations, is valid
even when assumptions Al and A2 do not hold.

Under assumptions Al and A2, we seek var{U(0)|ACH} and cov{U,(0), U,(0)|ACH} by
averaging quantities (3) and (6) over all realizations consistent with the experimental design for
sampling the assembled cohort. Since E{U,(0) |SH} = 0, terms like var{E{U,(0) |SH}] = var[0}
= 0 can be ignored. We now calculate cov{U,(0), U;(0) | ACH} for the full-cohort, nested
case--control, case—cohort, and augmented case-cohort designs.

The full-cobort design yields exposure information on everyone in the assembled cohort, so
sets éj = R;~ D; = C;. Since ACH determines the quantities N, ;, the terms n;; = N;; ~ 1
in (3) are ﬁxed and var{U (0)|ACH} = (N;; — 1)o®/N;; as in Cox (1972), except that ¢
replaces the sample variance of the exposures of members of R; In(6), n;; = N;; — 11is fixed,
but n,; = N; — &, varies. The expectation

E(5,,|ACH) = N Pr(ie C,)Pr(ie &,

)

X Pr(ieR;|ieC, N C)Pr(ieD;|ieR,N C, N C;)
= N{{Nep = 1)/NHIH{N; /(N = DH{I/N}
_qu/

since Pr(ieD;|ieR; N C, N C,) =Pr(ieD;| R)) by assumptions Al and A2. Thus the
expectation of (6) given ACH is zero, regardlcss of whether the assembled cohort is open or
closed.

For nested case~control sampling with a fixed number of noncases, 1 ;» chosen at ¢ s the
Guantities 7n;; = /; in (4) are constant, and (5) yiclds standard variances for matched case-
control studies (Ury, 1975). In (6),

E(n,;|ACH) = N{(Ny = 1)/NHL /(N — 1)}
X {Nei /(N = DHN, = 1)/NHE /(N = 1))
= LN /{N (N — DY,
from the laws of conditional probabilities used above. Likewise,
E(8,;|ACH) = N{( Ny — 1)/NH{1, /(N = DN /(N = DI{1/N,;}
=L, N /{N;;(New — 1)}

Hence (6) vanishes in expectation given ACH for the nested case-control design.

i’
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For the case-cohort design (Prentice, 1986) and other more general unbiased control
sampling plans (§1), one cannot easily compute the exact expectation of (5) or (6) given ACH
because quantities like (n;; + 1) in the denominators vary. Nonetheless, a reasonable approxi-
mation, especially for large ny;, is obtained by replacing each of the random quantities 7, ; and
8, ; 1n (5) and (6) by its expectation. In particular,

E(n;;|ACH) = N, Pr{ieC;|ieR\Pr(ie
= NAN, = 1)/N}o

= (N = 1)p;,

J)

where
p;=Pr(ieC;lieC,NR)) =Pr(ieC,|ieC)).
Likewise, E(n,, |ACH) = (Ny, — Dp,, and
E(n,,;|ACH) = N;; Pr(ie C, N C;lieR, NR)Pr(ie, N ClieC,NC,N R, NR,)

= N, Pr(ieC,

= N A(N;; = 1)/ N} o

j)ij

where
piy=Pr(ieC NG lieC,NCNRNR,) =Pr(ieC,NClieC,NC).
Finally, '
B(68,;|ACH) = N Pr(ie C;, N D,|ACH)
=NPr(ieR, NRPr(ieC, | R, NR,)
xPr(ieC,lieC, N R, NRPr(ieD;|ieC,NC, NR,NR))

= N(Nk,i/N)(l)(/’k)(l/Z\Gj) = 0N/ Ny

Substituting these results in (5) and (6), we obtain the approximations

Viy = var{U,(0) |ACH] = a*{{N,, = D)p,}{(Ny; = 1)o; + 1} (7)

R
and

Vij = cov{U(0), U{0) |ACH} = o*{N,,(N;; = 1)/N,} o, ~ pr0;}

X {(New = Do + 1} {(N; = Do+ 137 (8)

In particular, note that for the full cohort design p k= Pr = p; = 1 so that (8) vanishes, just as
in the exact calculation above. Likewise, for nested case-control sampling in which controls at
t; are properly selected (Robins et al., 1986) without replacement from C; and independently of
other selections, p; j = Prpj, 80 that (8) vanishes, just as in the exact ca]culauon above for 1-to-/
case—control sampling with p, = I /(N,, — 1). We now apply the results (7) and (8) to the
case—cohort and augmented casemcohort designs.

In the case-cohort design (Prentice, 1986), we select a “‘subcohort”” of fN individuals at
random from the entire cohort of N subjects. The sets C consist of those members of C; who
are also in the subcohort. Hence o ; =P =0, = a and from (8) we find that covarwnceq are
positive and proportional to f— f? = f(1 — f). In particular, covariances vanish as the
sampling fraction f tends to 0 or as f tends to 1, the fuil-cohort design.

1
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Table 1
Approximate efficiencies for estimating 8 compared to the full-cohort design®

Control-to-case ratio, m

1 3 5 10 20
Case-control 500 750 834 909 953
Case~cohort 370 630 .739 .850 921
Optimal® augmented
case—~cohort 404 .667 769 872 934

*Efficiencics are calculated from the superpopulation model as in Section 2.2.

"A .grid search was performed on S fa, and 7, subject to the constraint fiN + f, N, = 55m, by using values
HN/SIN+HLN) = .1,.2,...,.9 and by allowing 7 to be the death times corresponding to events [5.5/] for
i=1,2,...,9, where [-] denotes the next lower integer. The smallest variance thus found for the estimate of 8 was
used to compute efficiency. For the case m = 5, the optimizing values were f| /(f, + f,) = .5 and 7 was the 17th
death time.

We define the augmented case--cohort design as follows. First sample a fraction f, from the
entire cohort and call these f; N individuals SC,. Then, define an augmentation time 7, and
independently sample a fraction f, from the set R, — SC,, where R is the set of all N
persons at risk at or beyond 7. The sets C consist onlv of members of SC NC fore, <7 and
of members of (SC, U SC,) N C; otherwwc For t; <7, p; = f,, whereas for Lz,

=L+ 50~ 1t <7, b =S Wt 27, p; = f +f2(1 — f1). These values of
: and py; ay be substituted into (7) and (8) to obtain needed variances and covariances.

The augmented case-cohort design depends on 7, the point that determines who is eligible for
the second subcohort, as well as the sampling fractions f, and f,. In the following comparisons
among designs, we perform a grid search on 7, f,, and f, to find the values 7%, f, and f}
that minimize var( 6) subject to the constraint that /N + f, N_ equals the fixed total number of
subjects in the two subcohorts. We compare the *‘optimal’” augmented case-cohort design with
other designs in Table 1, but in simulation studies (§4) we retain the optimal design from the
original assembled cohort rather than reoptimize for each simulated repetition.

3. Example

3.1 Calculation of Superpopulation Variances and Corresponding Efficiencies for the
Insurance Cooperative Assembled Cohort

The insurance cooperative cohort contained 17,633 men whose ages at entry varied from 30 to
97. During 20 years of follow-up, 55 deaths from prostatic cancer were identified. From each
individual’s data on times of entry, loss to follow-up, and time of death, the quantities N, ; were
calculated for k = 1,2,...,55;, j =k, k + 1, . 35. This assembled cohort was “‘open’ on
the time scale defined by age because individuals emered at different ages; the individual data
may be described as variably left-truncated and right-censored since ages at entry and end of
follow-up varied.

From equations (3) and (7) with V) ; = 0, the variance of BM. the estimator from the full
cohort, was found to be var(f,..) = .0182/¢2, where o2 is the unknown variance of exposures
in the population. Because N;; is always large Vi, in (7) is very ncarly ¢, so that
var(Bpe) = (67535)7!, a result found in Cox (1972). Indeed, to three significant figures,
1 /55 = .0182 agrees with the result derived from (7). The unknown o? cancels from efficien-
cies, which are the ratios of var( BFC) to variances of estimates of 8 from other designs (Table
D).

With m controls for each case, the variance ratios computed from (3), (7), and (8) for the
nested case—control design are virtually identical (Table 1) to the well-known efficiency formula
m [{m -+ 1) given by Ury (1975). This result follows by noting that (N;; = Dp, is very nearly
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m in equation (7) and that (8) vanishes. The approximate efficiency of the case—cohort design is
less than that of the case—control design for this assembled cohort (Table 1). The case~-cohort
sampling fraction f = 55m /17,633 was used (§2.2). With m = 1, the case-cohort design is
only 74% as efficient as the case-control design (Table 1). These efficiency calculations ignore
the fact that slightly fewer than (m + 1)d distinct cases and controls are utilized in these
designs, because of potential overlap among controls and between cases and controls. For
example, the case~cohort design typically involves 55m[1 — 55/17,633] = 54.8m rather than
55m noncases. Likewise, Langholz and Thomas (1990) discuss overlap in the case—control
design. In our example, corrections for overlap do not affect efficiency calculations appreciably.
However, if many events are associated with small overlapping risk sets, R, such corrections
may be required.

Augmenting the case-cohort design with a second subcohort produces only a minor improve-
ment in efficiency, compared with the case-cohort design, and in no case is the augmented
case—cohort design more efficient than the case~control design for this assembled cohort
(Table 1).

Perhaps the most important conclusion from these calculations is that for m 2 3, all three
economical designs vastly reduce the number of subjects for whom full covariate information is
required at little cost in statistical efficiency. Differences in efficiency among the three
economical designs are small for m 2> 5.

4. Simulation Study of Superpopulation Variance

4.1 Design of Simulations

We sought to investigate the properties of the superpopulation variance via simulation both when
assumptions Al and A2 were satisfied and in special simulations where the assumption A2 was
purposely violated. We performed eight simulation experiments, each consisting of the following
steps:

1. Randomly resample with replacement a cohort of 17,633 from the original cohort of size
17,633, using the original entry, censoring, or event times, and failure indicator for each
individual in the insurance cohort (Bjelke, unpublished Ph.D. thesis, University of
Minnesota, 1973).

2. Subjects in the resampled cohort are independently assigned to one of two ““factories’” with
probability 7.

3. Exposure is randomly assigned to subjects according to separate exposure distributions in
factory A and factory B. Within factories, exposures were independently distributed.

If only these steps are performed, assumptions Al and A2 are satisfied. To test the effects of
violations of A2, we added one additional step in some of the experiments:

4. All subjects assigned to factory B are censored at age 67.9, which is the median age at death
from prostatic cancer.

If the exposure distributions are different in factories A and B, step 4 induces a violation of
assumption A2. Assumption Al is not violated by step 4 gince exposure is unrelated to cutcome
both before and after age 67.9. The expected number of events when step 4 is included is
(2)(55) = 41.25.

In each simulation the matrix N ; changed, and we recalculated the superpopulation vari-
ances. We also estimated the log-hazard ratio from the full-cohort analysis, from a case~control
sample with m = 5 controls per case, from a case~-cohort sampie with subcohort size md, and
from an augmented case-cohort sample with a total of md subjects in the two subcohorts. In the
simulations, d was a random variable with mean 55, except in studies which included step 4, for
which the mean was 41.25. Ties were broken at random.
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Table 2
Designs of simulation experiments

Experiment Additional censoring Exposure distribution Exposure distribution A2
# in factory B? in factory A in factory B violated?
1 No Bern(.5)* Bern(.5) No
2 Yes Bern(.5) Bern{.5) No
3 No N0, D N@O, D No
4 Yes N(@©, D N@©, D No
5 Yes Bern(.25) Bern(.75) Yes
6 Yes Bern(.05) Bern(.95) Yes
7 Yes N©O, N(1.15, D Yes
8 Yes N, 1) N4, D Yes

*Bern( p) stands for the Bernoulli distribution with probability p, and N{g. 6?) stands for the normal distribution
with mean p and variance o?.
Other details of the simulation design are in Section 4.1. Al is not violated for any of the studics.

Since the N ; varied with each resampling, the optimal augmented case—cohort design also
varied. Rather than optimize the cutpoint for each sampling, we kept Sy and f, from the
original cohort, and chose 7 as the quantile of the death time distribution that was *‘optimal” in
the original assembled cohort.

Assumption A2 is violated in experiments 5, 6, 7, and 8 (Table 2) but not in experiments 1, 2,
3, and 4, because although there is differential censoring in experiments 2 and 4, the distribution
of exposures is the same in each factory in those experiments. The means of 0.0 and 1.15 in
experiment 7 and 0.0 and 4.0 in experiment 8 were chosen so that the standardized differences in
means would nearly equal those in experiments 5 and 6, respectively. Assumption Al is never
violated.

4.2 Resulis of Simulations to Verify the Accuracy of the Superpopulation Variance
Estimates and Efficiency Approximations When Assumptions Al and A2 Hold

Superpopulation assumptions Al and A2 hold for studies 1, 2, 3, and 4 (Table 3). The average
estimated § was close to zero for all designs in all studies, and it no case was there statistically
significant evidence against H,: 8 = 0 at the .05 level (data not shown). If the average
superpopulation variance were the true variance of 3, then the ratio of the empirical (sample)
variance of 3 to the average superpopulation variance would fall within the interval (.914, 1.075)
with probability .95 (see Beyer, 1968, Table V.2). Except for experiment 4, the ratios of
empirical variances to average superpopulation variance were within 6% of 1.0, and even in
experiment 4 the discrepancies were modest. The empirical efficiencies, which were estimated
as ratios of the empirical variance of # for the full-cohort design to the empirical variance of §
for an alternative design, agreed with the average ratio of the respective superpopulation
variances even more closely and support the contention that case-control sampling is slightly
more efficient than the two case-cohort designs. Thus the superpopulation estimates of variances
and efficiencies performed well for this assembled cohort in four different conditions of
exposure and censoring.

4.3 Results of Simulations to Test Robustness to Violations of Assumption A2

Moderate violations of assumption A2 caused the superpopulation variance approximations to
underestimate the empirical variances of § by up to 18% (experiments 5 and 7, Table 4), but
efficiency estimates based on the superpopulation model continued to yield reliable guidance on
the relative performance on case-control and case-cohort designs. More extreme violations of
assumption A2 yielded large discrepancies between the empirical variances and the variances
predicted from the superpopulation model (experiments 6 and 8, Table 4), and, in these cases,
the superpopulation model suggested that the case-control design would be more efficient,
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whereas the empirical results indicate that the three designs have nearly the same efficiency. We
conclude that the superpopulation model is useful for selecting a design in the presence of
moderate, but not severe, violations of assumption A2 and that sample size calculations, which
depend on good estimates of variance, can be sericusly distorted by violations of A2.

5. Discussion

We have shown how to use the superpopulation model to compare the efficiencies of a variety of
potential designs for unbiased control sampling from an assembled cohort. These methods may
be used not only for the four designs studied in this paper, but also for other unbiased controt
sampling designs for which analytical methods for variance estimation have yet to be developed.
These calculations depend only on the numbers N, ; at risk in the assembled cohort and seem to
be robust to moderate associations between exposure and follow-up pattern, i.e., violation of
assumption A2. By carrying out such calculations within separate strata, these methods can be
extended to efficiency calculations for stratified analyses. An alternative approach to assessment
of efficiencies is to resample from the original cohort as in Section 4.1 and to compare empirical
variances of estimates of 8 obtained from various designs. Halpern and Brown (1987) likewise
exploit simulation methods for designing complex clinical trials.

While these calculations are useful for selecting a sampling design, they should not be used
for analyzing the final data. For this purpose, variance estimates that are valid regardless of 3 or
censoring pattern should be used, as given, for example, by Cox (1972) for the full-cohort
design, by Breslow and Day (1980, Chap. 7) for the nested case—control design, and by Prentice
(1986), Self and Prentice (1988), and Wacholder et al. (1989) for the case-cohort design.

We have emphasized efficiency calculations for an assembled cohort with fixed N, o
Wacholder et al. (1989) have applied similar ideas to planning clinical trials in which the N, g
are not yet available by replacing N, ; by estimated values of N, ;. These methods are useful for
complex accrual and censoring patterns. Self and Prentice (1988) give a more comprehensive
theoretical treatment of such power calculations. These studies indicate that the case—cohort
design can be slightly more efficient than the case—control design in closed cohorts with little
censoring, whereas the case-control design can be more efficient with heavy censoring.

Our efficiency calculations and simulations were based on a single large cohort. Further
studies would be desirable to document the validity and robustness of the procedures we
describe.

Each of the three alternatives to the full-cohort analysis drastically reduced sample size
requirements at little cost in statistical efficiency. The benefits of augmented case-cohort
sampling were modest, compared to the simple case-cohort design (Tables 1, 3, and 4). It is
possible that complete reoptimization of the augmented case-cohort sampling for each simula-
tion might bave improved the performance of this design slightly, compared with results in
Tables 3 and 4, but data in Table 1 suggest that even completely optimized case--cohort
augmentation will not perform as well as case-control sampling for this cohort.

One might expect the efficiency of the two case-cohort designs to improve if the exposure X
were a time-dependent covariate, rather than a fixed covariate. For example, if X were the
cumulative exposure to radiation, then the covariances betgveen pairs of scores U, (0) and U«0)
would be smaller than shown in (6), and the efficiency of 3 from the case-cohort designs would
be increased. However, extra cost might be incurred if more exposure data or repeated
measurements of a covariate were required.

Although the various unbiased sampling schemes we studied have slight differences in
efficiency, the main observation from this work is that each of these designs can produce
important cost savings. Thus the choice among such designs should often be made on the basis
of ease of implementation and other practical considerations. An important practical advantage
of the case-cohort design is that the same controls may be used to study several diseases (see
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Kupper, McMichael, and Spirtas, 1975; Prentice, 1986). Nonetheless, if o
large assembled cohort, it seems well worthwhile to calculate N, and
efficiencies of alternative designs.

RESUME

Nous avons développé des méthodes d’approximation afin de comparer Vefficience et de ¢a
puissance des différents plans d’échantillonage possibles & partir d’une cohorte, avant de commen
recueillir des données sur exposition. Ces méthodes nécessitent seulement une cohorte dite “‘rassemblée’’’
c’est & dire ob les nombres N, ; de sujets a risque pour chaque couple de temps correspondant & des
événements 1, et I; 2> I; sont connus. Pour calculer N, ;, il faut connaitre, pour chaque sujet, la date
d’entrée, le suivi, la notion de censure ou d’événement, sans avior besoin de la notion d’exposition. Nos
méthodes s’appliguent ¥ *“tout plan d’échantillonnage non biaisé a partir d’une population témoin,”” ot les
cas sont comparés 2 un échantillon tiré au sort de témoins a risque. Nous avons testé nos méthodes afin
d’estimer Vefficience d’une étude cas-témoins emboitée, d'une étude cas-cohorte, ou d'une émde de
cohorte augmentée, comparée 3 une enguéte de cohorte exhaustive, a partir des données provenant d’une
cohorte “‘rassembiée’” de 17633 members d’une société d’assurance svivis pour étudier la mortalité par
caticer de la prostate. Notre approximation suppose une exposition indépendante 2 la fois du risque
d’apparition d’un événement et du temps de censure. Les approximations se sont révélées satisfaisantes au
cours des simulations quand les hypothéses étaient vérifides et lorsqu’il existait une liaison modérée entre
I’exposition et le processus de censure.
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